Forward Learning
Papers read during research forward deep learning algorithm.
Quick notes
- 正推,逆推
- 底层精度高=> 高层精度高
- 相同结构网络,精度高的网络,从中间截取进行分类是否精度也高?
- 不同粒度特征提取的结合
- 粒度,卷积层数? 层数不同的实质是什么不同?
- 在调整了一些Hyper-paramenter后,大致上可以发现影响更大的参数,比如卷积核数
- 调整优先级:欠拟合 > 过拟合
- 用CIFAR-10训练时,测试集上的loss会在某次迭代中突然丢失,然后又恢复,形成一个尖刺?
- 将问题分割成子问题,但试图用深度学习解决的问题,都不太好分割成子问题
Orthogonal Bipolar Target Vectors1
Can OBV construct a middle target for CNN?
A kind of target representation.
- conventional
- BNV - binary: \((0, 0, 1, 0, 0)\)
- BPV - bipolar?: \((-1, -1, 1, -1, -1)\)
- OBV - orthogonal bipolar vectors
- NOV - Non-Orthogonal Vecotrs
- For fail comparision
- \(V_i=(\overbrace{-1 , \cdots , -1}^{i-1}, 1, \overbrace{-1 , \cdots , -1}^{n-i})\)
- \(cos \theta = \frac{n-2}{n}\)
- degraded characters?
- They use degraded license plate images as expirement data. (车牌号)
How to generate OBV from conventional target?