Forward Learning

Papers read during research forward deep learning algorithm.

Quick notes

  • 正推,逆推
    • 底层精度高=> 高层精度高
    • 相同结构网络,精度高的网络,从中间截取进行分类是否精度也高?
  • 不同粒度特征提取的结合
    • 粒度,卷积层数? 层数不同的实质是什么不同?
  • 在调整了一些Hyper-paramenter后,大致上可以发现影响更大的参数,比如卷积核数
    • 调整优先级:欠拟合 > 过拟合
  • 用CIFAR-10训练时,测试集上的loss会在某次迭代中突然丢失,然后又恢复,形成一个尖刺?
  • 将问题分割成子问题,但试图用深度学习解决的问题,都不太好分割成子问题

Orthogonal Bipolar Target Vectors1

Can OBV construct a middle target for CNN?

A kind of target representation.

  • conventional
    • BNV - binary: \((0, 0, 1, 0, 0)\)
    • BPV - bipolar?: \((-1, -1, 1, -1, -1)\)
  • OBV - orthogonal bipolar vectors
  • NOV - Non-Orthogonal Vecotrs
    • For fail comparision
    • \(V_i=(\overbrace{-1 , \cdots , -1}^{i-1}, 1, \overbrace{-1 , \cdots , -1}^{n-i})\)
    • \(cos \theta = \frac{n-2}{n}\)
  • degraded characters?
    • They use degraded license plate images as expirement data. (车牌号)

How to generate OBV from conventional target?