文化
速记
龙之九子
- 龙有九个儿子,是跟谁生的?为什么「龙生九子,各不成龙」? - 豆子的回答 - 知乎
- 龙有九个儿子,是跟谁生的?为什么「龙生九子,各不成龙」? - 知乎
一说
龍生九子不成龍,各有所好:
囚牛,龍種,平生好音樂,今胡琴頭上刻獸是其遺像;
睚眦,平生好殺,今刀柄上龍吞口是其遺像;
嘲風,平生好險,今殿角走獸是其遺像;
蒲牢,平生好鳴,今鐘上獸鈕是其遺像;
狻猊,平生好坐,今佛座獅子是其遺像;
霸上,平生好負重,今碑座獸是其遺像;
狴犴,平生好訟,今獄門上獅子頭是其遺像;
贔屭,平生好文,今碑兩旁龍是其遺像;
蚩吻,平生好吞,今殿脊獸頭是其遺像。
李东阳(1447年-1516年) 《怀麓堂集》
行于五台
出发
旧岁之末,新年伊始,我们来到了五台山。
这是我第一次进行多天的徒步。
去之前的心情还是比较放松的,因为从照片上看,五台山的山势平缓。
路,看起来相当的很好走。
仅有的一丝丝忐忑不安,仅仅是有点低的温度。
CS231n
Course notes of CS231n, Convolutional Neural Networks for Visual Recognition.
2. Image Classification pipeline
- Challenges
- Viewpoint variation 多视角
- Illumination 光线
- Deformation 变形
- Occlusion 遮挡
- Background Clutter 杂乱的背景
- Intraclass variation 内类多样性
- Nearest Neighbor
- Compute the distances of testing images and training images
- \(L_n\) norm
- \((\sum_{i}{|X^i|^n})^{\frac{1}{n}}\)
- \(L_n\) distance
- \((\sum_{i}{|X_1^i - X_2^i|^n})^{\frac{1}{n}}\)
- method
- For each testing image, find the nearest training image
- Use the label of finding training image as the prediction
- complexity
- Training: \(O(1)\)
- Testing: \(O(n)\)
MCB80x
MCB80x, the fundamental of neuroscience, is a free, open, online Neuroscience course from HarvardX led by Professor David Cox. Animation by Daniela Sherer + Music by Dan Deacon. Edited by Alex Auriema.
Welcome
- Harvard
- brain
- Three parts
- explore science in Harvard and Boston
- guided interactivity
- DIY science
- Modules
- THE ELECTRICAL PROPERTIES OF THE NEURON
- signal generating, transfering
- NEURONS AND NETWORKS
- groups of neurons
- THE BRAIN
- society, intelligence
- THE ELECTRICAL PROPERTIES OF THE NEURON
Matlab
Quick notes
! Matlab start from 1, not 0 !
switch
dataset = 'minist';
switch(dataset):
case 'cifar-10'
code;
case 'minist'
code;
otherwise
error('Unrecognized dataset!')
end
Shell
Links
Quick notes
System information
neofetch
, system infodu -sh <file>/<directory>
, check the size of file or directorydf -h
, display free disk space-h
, 1k = 1024 byte-H
, 1k = 1000 byte
uname -s
, print kernel name- Linux
- Darwin
uname -r
, linux release numberlast -n 50
, check last logged in userslastb -n 50
,pstree -p
, process treew
, show who is logged on and what they are doing
Vim
This notes contains useful tips for using Vim or editing and I use spf13-vim.
- spf13-vim is a distribution of vim plugins and resources for Vim.
- Install spf13-vim:
curl http://j.mp/spf13-vim3 -L -o - | sh
Plugins
Surround
Managing all the ‘”[{}]“’ etc.
- Characters meaning
- operations
d
deletec
changey
add?
s
representssurrounding
S
for visual mode surroundings- text object (vim editing)
w
wordiw
in wordaw
all word, including space(s)
- surroundings
(
left bracket will give a space between it and content)
right won’tb
=)
- operations
- Examples
yss)
surround a line of content with()
ysiw<div>
surround a word like this<div>nice</div>
VS<div>
surround a line with<div></div>
Forward Learning
Papers read during research forward deep learning algorithm.
Quick notes
- 正推,逆推
- 底层精度高=> 高层精度高
- 相同结构网络,精度高的网络,从中间截取进行分类是否精度也高?
- 不同粒度特征提取的结合
- 粒度,卷积层数? 层数不同的实质是什么不同?
- 在调整了一些Hyper-paramenter后,大致上可以发现影响更大的参数,比如卷积核数
- 调整优先级:欠拟合 > 过拟合
- 用CIFAR-10训练时,测试集上的loss会在某次迭代中突然丢失,然后又恢复,形成一个尖刺?
- 将问题分割成子问题,但试图用深度学习解决的问题,都不太好分割成子问题
Orthogonal Bipolar Target Vectors1
Can OBV construct a middle target for CNN?
A kind of target representation.
- conventional
- BNV - binary: \((0, 0, 1, 0, 0)\)
- BPV - bipolar?: \((-1, -1, 1, -1, -1)\)
- OBV - orthogonal bipolar vectors
- NOV - Non-Orthogonal Vecotrs
- For fail comparision
- \(V_i=(\overbrace{-1 , \cdots , -1}^{i-1}, 1, \overbrace{-1 , \cdots , -1}^{n-i})\)
- \(cos \theta = \frac{n-2}{n}\)
- degraded characters?
- They use degraded license plate images as expirement data. (车牌号)
How to generate OBV from conventional target?
Hinton Course
Learning notes of Hinton’s Neural Networks for Machine Learning in Coursera.
1. Introduction
1a. Why do we need machine learning
What, Why
- We don’t know how to program to solve some problems or the program might be very complicated.
- Rules may need to change frequently, like recognizing fraud.
- Cheap computation
How
- Collect lots of cases with inputs and correct outputs.
- ML algorithms takes examples and produces a program to do the job.
Good at
- Recognizing patterns
- Objects
- Face
- Spoken words
- Recognizing anomalies (unusual)
- Transactions
- Sensor readings in a nuclear power plant
- Prediction
- Stock prices, exchange rates
- Movie recommendations
Git
Some git notes.
Links
Basic configuration
Git config
# List configuration
git config -l
git config --global -l
# Config user's info
git config --global user.name "Mr.Blue"
git config --global user.email "silverhugh.77@gmail.com"
# Delete config
git config --global --unset user.username
# Config editor for git, use vim, nano or so on
git config --global core.editor "vim"
# True way to Commit
# `git commit` will open an vim editor (set by command before)
# write the commit message in it and `:x` to commit