Docker

Quick notes

Commands

  • docker images
  • docker run -it ubuntu <shell>
    • -v <host_dir>/<container_dir>
    • -p
    • --rm, automatically aremove the container when it exists
  • docker exec -it <container_name> bash
  • docker history <image>
  • 自下而上构建镜像层的缓存,<...>: Already existes
  • docker ps
    • -a for all


行走

行走记录

  • 2018-03-24 45321步 33.5km

路线

  • 2018-01-07 大钟寺博物馆-中华民族园博物馆-中国动物博物馆
  • 2018-01-14 清华大学艺术博物馆-香巴拉户外用品专卖店-中国人民大学
  • 2018-01-21 惠新西街南口-天坛
  • 2018-01-28 石刻艺术博物馆-古代钱币展览馆(德胜门箭楼)
  • 2018-02-05 西直门-阜成门-宣武门-中国铁道博物馆正阳门展馆-正阳门城楼
  • 2018-03-04 中国海关博物馆(雄关漫道:丝绸之路上的谷关)-北京古观象台
  • 2018-03-10 国家典籍博物馆-中国古动物馆-李大钊故居
  • 2018-03-17 首都博物馆
    1. 天路文华,西藏历史文化展
    2. 读城,发现北京四合院之美
  • 2018-03-24 玉渊潭-中国革命军事博物馆

文化

速记

龙之九子

  • 龙有九个儿子,是跟谁生的?为什么「龙生九子,各不成龙」? - 豆子的回答 - 知乎
  • 龙有九个儿子,是跟谁生的?为什么「龙生九子,各不成龙」? - 知乎

一说

龍生九子不成龍,各有所好:
囚牛,龍種,平生好音樂,今胡琴頭上刻獸是其遺像;
睚眦,平生好殺,今刀柄上龍吞口是其遺像;
嘲風,平生好險,今殿角走獸是其遺像;
蒲牢,平生好鳴,今鐘上獸鈕是其遺像;
狻猊,平生好坐,今佛座獅子是其遺像;
霸上,平生好負重,今碑座獸是其遺像;
狴犴,平生好訟,今獄門上獅子頭是其遺像;
贔屭,平生好文,今碑兩旁龍是其遺像;
蚩吻,平生好吞,今殿脊獸頭是其遺像。

李东阳(1447年-1516年) 《怀麓堂集》


行于五台

出发

旧岁之末,新年伊始,我们来到了五台山。

这是我第一次进行多天的徒步。

去之前的心情还是比较放松的,因为从照片上看,五台山的山势平缓。

路,看起来相当的很好走。

仅有的一丝丝忐忑不安,仅仅是有点低的温度。


CS231n

Course notes of CS231n, Convolutional Neural Networks for Visual Recognition.

2. Image Classification pipeline

  • Challenges
    • Viewpoint variation 多视角
    • Illumination 光线
    • Deformation 变形
    • Occlusion 遮挡
    • Background Clutter 杂乱的背景
    • Intraclass variation 内类多样性
  • Nearest Neighbor
    • Compute the distances of testing images and training images
    • \(L_n\) norm
      • \((\sum_{i}{|X^i|^n})^{\frac{1}{n}}\)
    • \(L_n\) distance
      • \((\sum_{i}{|X_1^i - X_2^i|^n})^{\frac{1}{n}}\)
    • method
      • For each testing image, find the nearest training image
      • Use the label of finding training image as the prediction
    • complexity
      • Training: \(O(1)\)
      • Testing: \(O(n)\)


MCB80x

MCB80x, the fundamental of neuroscience, is a free, open, online Neuroscience course from HarvardX led by Professor David Cox. Animation by Daniela Sherer + Music by Dan Deacon. Edited by Alex Auriema.

Welcome

  • Harvard
  • brain
  • Three parts
    • explore science in Harvard and Boston
    • guided interactivity
    • DIY science
  • Modules
    • THE ELECTRICAL PROPERTIES OF THE NEURON
      • signal generating, transfering
    • NEURONS AND NETWORKS
      • groups of neurons
    • THE BRAIN
      • society, intelligence


Matlab

Quick notes

! Matlab start from 1, not 0 !

switch

dataset = 'minist';
switch(dataset):
    case 'cifar-10'
        code;
    case 'minist'
        code;
    otherwise
        error('Unrecognized dataset!')
end


Shell

Quick notes

System information

  • neofetch, system info
  • du -sh <file>/<directory>, check the size of file or directory
  • df -h, display free disk space
    • -h, 1k = 1024 byte
    • -H, 1k = 1000 byte
  • uname -s, print kernel name
    • Linux
    • Darwin
  • uname -r, linux release number
  • last -n 50, check last logged in users
  • lastb -n 50,
  • pstree -p, process tree
  • w, show who is logged on and what they are doing


Vim

This notes contains useful tips for using Vim or editing and I use spf13-vim.

  • spf13-vim is a distribution of vim plugins and resources for Vim.
  • Install spf13-vim: curl http://j.mp/spf13-vim3 -L -o - | sh

Plugins

Surround

Managing all the ‘”[{}]“’ etc.

  • Characters meaning
    • operations
      • d delete
      • c change
      • y add?
    • s represents surrounding
    • S for visual mode surroundings
    • text object (vim editing)
      • w word
      • iw in word
      • aw all word, including space(s)
    • surroundings
      • ( left bracket will give a space between it and content
      • ) right won’t
      • b = )
  • Examples
    • yss) surround a line of content with ()
    • ysiw<div> surround a word like this <div>nice</div>
    • VS<div> surround a line with <div></div>


Forward Learning

Papers read during research forward deep learning algorithm.

Quick notes

  • 正推,逆推
    • 底层精度高=> 高层精度高
    • 相同结构网络,精度高的网络,从中间截取进行分类是否精度也高?
  • 不同粒度特征提取的结合
    • 粒度,卷积层数? 层数不同的实质是什么不同?
  • 在调整了一些Hyper-paramenter后,大致上可以发现影响更大的参数,比如卷积核数
    • 调整优先级:欠拟合 > 过拟合
  • 用CIFAR-10训练时,测试集上的loss会在某次迭代中突然丢失,然后又恢复,形成一个尖刺?
  • 将问题分割成子问题,但试图用深度学习解决的问题,都不太好分割成子问题

Orthogonal Bipolar Target Vectors1

Can OBV construct a middle target for CNN?

A kind of target representation.

  • conventional
    • BNV - binary: \((0, 0, 1, 0, 0)\)
    • BPV - bipolar?: \((-1, -1, 1, -1, -1)\)
  • OBV - orthogonal bipolar vectors
  • NOV - Non-Orthogonal Vecotrs
    • For fail comparision
    • \(V_i=(\overbrace{-1 , \cdots , -1}^{i-1}, 1, \overbrace{-1 , \cdots , -1}^{n-i})\)
    • \(cos \theta = \frac{n-2}{n}\)
  • degraded characters?
    • They use degraded license plate images as expirement data. (车牌号)

How to generate OBV from conventional target?